
2022 NDIA MICHIGAN CHAPTER
GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM
CYBERSECURITY OF GROUND SYSTEMS TECHNICAL SESSION

AUGUST 16-18, 2022 - NOVI, MICHIGAN

Secure Software Updates for Robotic and Autonomous Systems

Cameron Mott1, Dariusz Mikulski2, Sabrina Pereira1

1Intelligent Systems Division, Southwest Research Institute, San Antonio, TX

2US Army DEVCOM Ground Vehicle Systems Center, Warren, MI

ABSTRACT
Software updates provide critical new functionality and security

improvements to commercial and military vehicles. Organizations across the

Department of Defense (DoD) are recognizing that the hardened cybersecurity in

robotic and autonomous system (RAS) is essential. A secure software update

capability will be added to RAS, providing a peer reviewed security by design

solution for securing software updates.

Citation: C. Mott, D. Mikulski, S. Pereira, “Secure Software Updates for Robotic and Autonomous Systems,” In

Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI,

Aug. 16-18, 2022.

1. INTRODUCTION
Organizations across the Department of

Defense (DoD) are recognizing that the

hardened cybersecurity in robotic and

autonomous systems (RAS) is essential.

After all, without cybersecurity, we cannot

create a technical capability – but rather, we

create a technical liability. And this is

unacceptable for the world’s premier fighting

force.

As such, the Cybersecurity for Robotic &

Autonomous Systems Hardening (CRASH)

Joint Capabilities Technology

Demonstration (JCTD) was created to be a

joint effort to develop a comprehensive

cybersecurity software solution tailored for

RAS that can be used throughout the RAS

lifecycle. The program goal is to make RAS

more resilient to existing and emerging

threats and to provide deep cyber defenses at

various RAS touch points. And as part of this

three-year effort, Southwest Research

Institute (SwRI) is working with Ground

Vehicle Systems Center (GVSC) to develop

a secure software update capability that is

secure by design, platform-agnostic and

based on the Uptane standard.

2. Background
Software updates provide critical new

functionality and security improvements to

commercial and military vehicles. These

updates are typically performed by one or

more people that are physically near the

vehicle and log into the computers as a

DISTRIBUTION A. Approved for public release;

distribution unlimited. OPSEC #: OPSEC6554

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Updates for CRASH, Mott, Mikulski, Pereira.

Page 2 of 6

system administrator with all of the

capabilities (and responsibilities) to modify

anything on the system. An update may

include new code from other developers,

updated supporting libraries, or system

configuration changes. For some scenarios,

the entire system is rebuilt and deployed. The

security concerns for a manual update

process like this include single authentication

(only one deployer), single factor

authentication (something you know [a

password] is the only requirement), lack of

transparency (no one else is aware of what

changed), and escalated privileges (deployer

is an administrator and can change anything).

The update process has been leveraged as

an attack vector for adversaries, who are

exfiltrating PII, financial data, digitally

breaking into the vehicles and even planting

ransomware. The loss of a U.S. military asset

is a threat to the lives of our soldiers, provides

advanced technology to our enemies, as well

as having the potential of being used to

impersonate a trusted ally. The downtime and

maintenance costs are additional non-

monetary concerns for an insecure update

process. A secure software update process

both enables remote update capabilities as

well as protecting them from external

manipulation.

Securing software updates is achieved

through the peer-reviewed security practices

standardized in the update system called

Uptane. Over the past six years, security

professionals from the embedded and

automotive domain have been dedicating

their expertise to creating an open and peer-

reviewed cybersecurity framework. This

framework protects software updates that are

delivered to the computers running in today’s

commercial automobiles. The framework can

withstand attacks from malicious actors who

attempt to compromise in-vehicle computers,

servers, and networks used to sign and

deliver updates. The security enhancements

are achieved through the utilization of robust

key management, layers of security

protections, and inter-locking security

features.

3. Securing Updates
RAS frequently need to receive software

updates to support the ever-changing

demands of various missions. Current update

mechanisms replace the existing software

with an updated version through a direct

connection to the vehicle. This introduces a

threat vector since the update itself or the

vehicle’s computers could be manipulated

into accepting a malicious payload. RAS are

frequently operating in hostile environments,

with the threat of a pre-existing adversary.

The Uptane security framework was

designed to protect software updates even in

the presence of a persistent attacker with a

man-in-the-middle (MITM) exploit and is

perfectly suited to addressing the risks and

constraints of updating RAS while domestic

or deployed.

3.1. Security Features
 The structure of Uptane provides

hierarchical key management security, layers

of security protection, and inter-locking

security features. A hierarchical key

management structure delegates

responsibilities and capabilities between

multiple keys, all tied back to a root chain of

trust (see Figure 1). All keys are managed

Figure 1: Key hierarchy with a root chain of trust

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Updates for CRASH, Mott, Mikulski, Pereira.

Page 3 of 6

throughout their entire lifecycle, with the

ability to revoke and redistribute keys while

under threat of a compromise. Computers

within the vehicle coordinate to verify any

update based on their capabilities. Multiple

servers with different roles provide

redundancies that allow for security

verifications to provide the ability to

recognize not just the existence of an active

adversary, but where they infiltrated the

system.

 The update security is focused on the

servers and their communications with the

vehicle’s electronic control units (ECUs).

There are three servers involved in the

layered security features. An image server

contains the latest images for install, a

director server determines which images

correspond to each vehicle ECU, and a time

server can be used to provide the ECUs with

a source of secure, reliable time. Each ECU

is an Uptane client that must independently

download and verify the data from each

server before the update is installed. A visual

representation of the security features is

provided in Figure 2.

3.2. System Design
 The system architecture was developed in

coordination with the program participants

and draws from the capabilities offered by

each performer. A high-level system design

is presented in Figure 3.

 Each server functions within a public key

infrastructure and additionally stores,

generates, and sends metadata about the

updates that enables each Uptane client to

perform update validation and identify

possible attacks. The Image server contains

signed metadata about the general images,

while the Director server signs metadata for

the images on a per-vehicle basis. When an

update is performed, the vehicle’s main ECU

downloads, decrypts and verifies both sets of

metadata against each other, and finally

verifies that the target image’s hash matches

what is specified in the metadata. If all checks

pass, the image sent to its target ECU, where

a similar series of checks are performed on

the metadata and image before install. If any

verification check fails, a code indicating the

detected security attack is logged. The secure

update architecture to support these

capabilities is provided in Figure 4.

Figure 2: Key hierarchy and layers of security

protecting the connections from servers to a vehicle

Figure 3: Secure update architecture

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Updates for CRASH, Mott, Mikulski, Pereira.

Page 4 of 6

3.3. Threat Model
The threat model was created based on a

cyber tabletop (CTT) exercise that

incorporated all of the program participants.

Based on this CTT, the vulnerabilities that

were related to the update functionality were

vetted. Attacks against the update

functionality are presented in Table 1, along

with the indication of whether the attack is

demonstrated during year 1.

Table 1: Update Attacks

Attack Name Year 1 Demo

Eavesdropping ✓

Denial of Service

Partial Installation

Infinite Data ✓

Incorrect Installation ✓

Rollback ✓

Mixed Bundle ✓

Arbitrary Edit ✓

Injection ✓

Insider Attack

3.3.1 Eavesdropping Attack

This attack is successful if an attacker can

extract information from updates sent from

the repository to an ECU. Protections against

this attack include encrypting the images,

encrypting the communication link between

the client and the server, and revoking and

replacing compromised encryption keys. In

order for this attack to be successfully

performed, either an inside actor that is able

to prevent image encryption or a

vulnerability with the ECU encryption keys

must be present along with a MITM.

3.3.2 Denial of Service Attack

This attack is successful if an attacker can

block network traffic and prevent an ECU

from receiving updates. Protections against

this attack include active recognition of

network traffic conditions and refusal of any

updates until a determined period after

recovery of denial-of-service conditions. For

this attack to be attempted, there must be a

MITM interfering with the communication.

Figure 4. RAS system structure

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Updates for CRASH, Mott, Mikulski, Pereira.

Page 5 of 6

3.3.3 Partial Installation Attack

This attack is successful if an attacker can

allow only part of an update to install by

dropping selected traffic. Protections for this

type of attack include active recognition of

network traffic conditions, analysis of

metadata for an update, and refusal of any

updates until a determined period after

recovery from malicious network activity.

For this attack to be attempted, there must be

a MITM with the ability to interfere with

transmissions.

3.3.4 Infinite Data Attack

This attack is successful if an attacker can

force an ECU to store a large enough amount

of data that the ECU runs out of storage.

Protections against this type of attack include

limiting the amount of data that is

downloaded in an update based on the

metadata and monitoring the available

storage space. For this attack to be attempted,

there must be a MITM with transmit and

spoofing capabilities.

3.3.5 Incorrect Installation Attack

This attack is successful if a legitimate

vehicle can access an update that is not

intended for it. Protections for this type of

attack include implementing unique security

keys for each vehicle or ECU and having

unique designated installations that require

those keys. For this attack to be successfully

performed, there must be a MITM with

transmitting capabilities and inside actor/s

with access to multiple keys on separate

systems.

3.3.6 Rollback Attack

This attack is successful if an attacker can

send out a previously deployed update to an

ECU when a newer update exists. Protections

against this type of attack include

implementing monotonically increasing

version numbers (with exception of a base-

level functionality built into the system) and

rejection of any transmissions with duplicate

metadata. There are currently two existing

implementations of this attack, and both

currently assume no key compromise. The

first is a replay attack where old Director

Timestamp metadata is saved and then

replayed after sending an additional update.

If successful, a replay of metadata could

result in a rollback of installed software. In

the second version of the attack, all the

responses from the servers over the course of

a valid update are recorded, and upon a later

update, a tool is used to replay the responses

for corresponding new requests. For this

attack to be successfully performed, there

must be a MITM with transmit and spoofing

capabilities, and inside actors with access to

the director key and multiple offline keys.

3.3.7 Mixed Bundle Attack

This attack can force an ECU to install

incompatible versions of software updates

that must not be installed at the same time.

Protections for this type of attack include

signing the metadata for each version of an

update, and peer reviewing updates. For this

attack to be successfully performed, there

must be a MITM with transmit and spoofing

capabilities and access to the director key and

multiple online keys.

3.3.8 Arbitrary Edit Attack

This attack is successful if an attacker can

edit updates sent from the repository to an

ECU. Protections for this type of attack

include implementing Uptane protection,

detecting external identity spoofing, testing,

and verifying updates, peer review code

modifications, audits of all libraries, and

scheduled revocation and redistribution of

keys. There are two implementations of this

attack. The first implementation of the attack

targets data-at-rest on the Director server by

attempting to replace a valid update file with

a malicious one. In the second version of this

attack, data-in-transit is intercepted and

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Secure Updates for CRASH, Mott, Mikulski, Pereira.

Page 6 of 6

edited. For either of these attacks to be

successfully attempted, there must be a

MITM with transmit and spoofing

capabilities and access to a developer key and

a director key.

3.3.9 Injection Attack

This attack is successful if an attacker can

add their own functionality to an update by

injecting data into the update package.

Protections for this type of attack include

implementing Uptane protection, detecting

external identity spoofing, testing, and

verifying updates, performing code reviews,

audits of all libraries, and scheduled

revocation and redistribution of keys. For this

attack to be successfully performed, there

must be a MITM with transmit and spoofing

capabilities and inside actor/s with access to

the director key as well as multiple offline

keys. Additionally, any malicious code

changes or library adjustments would need to

go undetected by reviewers.

3.3.10 Insider Attack

This attack is successful if an attacker can

send a fully verified malicious update.

Protections for this type of attack include

implementing Uptane protection, testing and

verifying updates, peer reviewing code

modifications, audits of all external libraries,

and scheduled revocation and redistribution

of keys. For this attack to be successfully

performed, an external library would have to

be compromised without being detected, or

there must be a MITM with transmit and

spoofing capabilities and inside actor/s with

access to the director key and multiple offline

keys.

4. Future Efforts
This three-year program improves the

security of RAS starting with the vehicle (the

most forward-deployed asset). In Year 1, the

mitigations for the attacks against vehicle

update functionality will be demonstrated in

a test bench environment.

During Year 2, development of the software

will continue, focusing on the server-side

with a target of execution on DoD Servers.

Attacks that affect server functionality will

be included in the threat model. A

demonstration of the capabilities running on

an MRZR or representative vehicle

environment will be provided.

Year 3 will focus on validation and

verification of the update system, executing

penetration testing and Uptane compliance

testing on the MRZR as well as a DoD-

approved server. The demonstration during

year 3 will include a live mock field exercise,

complete with an active red team attempting

to leverage a cyber vulnerability against the

vehicle.

Additional advancements that are outside of

current program expectations include post-

quantum cryptography, fleet monitoring,

forward deployed security for denied or

contested environments, and zeroing-out

compromised equipment.

5. Conclusion
Over the course of this three-year program,

the cyber resilience of robotic and

autonomous systems will be markedly

improved. Demonstrations of the capabilities

and verifications through both internal and

external efforts will be performed. Through

this effort, the DoD will have a

comprehensive secure software update

solution tailored for robotic & autonomous

systems.

6. References
[1]Joint Development Foundation Projects,

LLC, Uptane Series, "Uptane Standard

for Design and Implementation v1.2.0,"

[Online]. Available:

https://uptane.github.io/papers/uptane-

standard.1.2.0.html. [Accessed 17 March

2022].

https://uptane.github.io/papers/uptane-standard.1.2.0.html
https://uptane.github.io/papers/uptane-standard.1.2.0.html

